Für das Problem mit der Rückkopplung habe ich ein brauchbare Lösung gefunden, die wie die ursprüngliche Schaltung eine Zenerdiode drin hat. Allerdings kommt der Widerstand R8 vor die Diode, und die Widerstände r7, R8 sollten deutlich (ca. 10 mal) kleiner werden. Damit ist dann auch der Strom für die Diode im Üblichen Bereich. Mit den kleineren Widerständen bleibt der Wert für C4 dann auch im Rahmen (bei mir in der Simulation eher 50 pF trotz etwa 10 mal kleinerer Widerstände). Die Rückkopplung erfolgt dann von der Basis (oder wahlweise Emitter) der MJ15003 zur Kathode der Zenerdiode, da wo auch der neue R8 ran kommt. Für 50 V Ausgangsbereich wäre eine etwa 6-10 fache Verstärkung richtig, also etwa 1 K für R8 und 5 - 9 K für die Rückkopplung.
Damit kommt man dann ohne eine negative Spannung aus, und mit der Rückkopplung ist die Spannung am Ausgang auch schon ohne den OP zum regeln relativ stabil.
Wieso die zuletzt gezeigte nicht funktioniert kann ich auch nicht sagen. Da müsste man wohl ein paar Spannungen / Ströme "nachmesse".
Die Kondensatoren C2/C3 muss man nicht vergrößern, aber man muss damit rechnen, dass ein Benutzer später an das Netzteil mal eine Schaltung mit einem dicken Elko an den Eingang hängt. Deshalb muss die Schaltung auch mit größeren Werten für C2 und C3 noch funktionieren. Um es etwas einfacher zu machen kann man dabei für den Elko wohl etwas ESR voraussetzen, also eine kleinen Serienwiderstand von vielleicht 0,01 Ohm beim Elko.
Zum testen kommt statt des Ausgangs vom OP ein Testsignal vom Generator. Mit einer langsamen Rampe kann man sehen ob der Spannungsbereich stimmt, also kleine und große Spannungen erzeugt werden können. Mit einem Sinus mit DC Offset kann man dann den Frequenzgang testen, also die Verstärkung und Phase als Funktion der Frequenz.
Hier noch das Bild der Schaltung bei mir:
![]()
Lesezeichen